Concrete and Advanced Concrete Technology Laboratory

Dr. Sri Kalyana Rama Jyosyula

Concrete and Advanced Concrete Lab Incharge

Concrete Technology Laboratory at Mahindra University aims to develop sustainable and economical solutions to meet the needs of the industry. The laboratory is well equipped to train students to conduct various experiments to understand the physical, chemical and mechanical properties of construction materials and durability characteristics.

The services offered by the laboratory are:

- Academic: Train undergraduate students as a part of their curriculum, Undergraduate and Postgraduate project works.
- Research: Investigate the properties of sustainable and futuristic materials, development of economical and eco-friendly concreting solutions.
- Consultancy: Construction material testing and mix design of concrete, Durability studies on concrete, and NDT of concrete.

On-going research projects:

- High performance precast concrete composites
- 3D printed concrete for non-structural applications
- Durability of Alkali-activated and geopolymer concrete
- Bond properties of Fiber reinforced concrete
- Ultra-high performance concrete for structural and non-structural applications
- Development of concrete products with mining waste and natural admixtures

Research expertise available with the laboratory:

- Prof. Ganesh Babu Kodeboyina (Prof. Ganesh Babu Kodeboyina | Mahindra University)
- Prof. Visalakshi Talakokula (Prof. Visalakshi Talakokula | Mahindra University)
- Dr. Mohd. Ataullah Khan (Dr. Mohd. Ataullah Khan Mahindra University)
- Dr. Sri Kalyana Rama Jyosyula (Dr. Sri Kalyana Rama Jyosyula Mahindra University)

Some of the recent undergraduate project works performed in the laboratory:

- Effect of Nano-silica on the performance of Sustainable concretes
- Adaptability of 3D Printed Concrete for Non Structural Applications
- Determination of Mechanical Properties of Unreinforced Masonry Specimens
- Fiber reinforced concrete for enhanced energy absorption
- Geopolymer concrete from waste materials

Equipment available in the laboratory:

The laboratory is well equipped with all the necessary instruments to test the basic material properties and advanced facilities are also available for M. Tech and Ph. D students.

Facilities available for Undergraduate Students at Concrete Technology Lab is given below

S. No	Equipment	
1.	Universal Testing Machine	
2.	Compression Testing machines	
3.	Brazilian Test Apparatus	
4.	Blaine's Air Permeability Apparatus	
5.	Cement tensile testing	
6.	Vicat's Apparatus	
7.	Flow Table	
8.	Vibrating Table	
9.	Needle Vibrator	
10.	Concrete Mixer-Drum	
11.	Concrete Mixer 50 cubes Capacity	
12.	Accelerated curing tank	
13.	Compression Testing Machine with 200 Ton capacity	
14.	Universal Testing Machine with 100 Ton capacity	

Facilities available for **M. Tech and Ph. D Students** at Advanced Concrete Technology Lab is given below

S. No	Equipment	
1.	Vane Shear Test Apparatus	
2.	Viscocity Test Apparatus	
3.	Energy Absorption Test on Concrete	
4.	Abrasion Resistance of Concrete	
5.	Rapid Chloride Permeability Teat Apparatus	
6.	Oxygen Permeability Indicator	
7.	Water Penetration Apparatus	
8.	Shrinkage Apparatus	
9.	Half Cell Potentiometer	
10.	Concrete Resistivity Meter	
11.	Corrosion Rate Meter	
12.	Coating Thickness Gauge	
13.	PIT Depth Gauge	
14.	Mist Generation Unit	
15.	Cement Autoclave Apparatus	
16.	Pan Mixer for Concrete	

17.	Carbonation Chamber	
18.	Humidity Chamber	
19.	Muffle Furnace upto 1600°C	
	Self-Compacting Concrete Apparatus – Flow Table, V Funnel, L Box,	
20.	U Box, J Ring	
21.	Anton Paar Dynamic Shear Rheometer	
22.	3D Printer for Concrete	
23.	Controls Universal Testing Machine for Fracture, fatigue, and flexure	
24.	Brick Making Machine	
25.	250 KG capacity Pan mixer for HPC, UHPC, and 3D printed concrete	
	Non Destructive Testing-Pundit Lab Ultrasonic Pulse Velocity an	
26.	Rebound Hammer Test, Profometer, Rebar Locator	

Images of Advanced Facilities in the Lab

Figure 1 3D Printer and 3D printed Concrete elements

Figure 2 Dynamic Shear Rheometer

Figure 3 Carbonation Chamber

Figure 4 Brick Making Machine

Figure 5 Controls Testing Machine

Figure 6 Compression and Universal Testing Machine

Figure 7 Humidity Chamber, Mortar Mixer, Vibration Table, Permeability, Shotcrete Impact, Muffle Furnace, Mist Generating Unit

Research Scholars in Concrete Technology Laboratory:

S.no	Name and Photograph	Area of Research
1	Lakshmi Thotakura	 High Strength and Ultra-High Strength Concretes Sustainable Materials
	Venugopal Mandala	Fiber reinforced concreteBond properties of concrete with fibers
2		

3	Kailash Kumar Singaram	Geopolymer Concrete3D Printing
	Sandeep Devarashetty	 Alkali Activated Concrete Carbonation of AAC
	Ramesh Gomasa	 Structural Health Monitoring Fracture of concrete
	Yeturi Pramod Kumar Reddy	 Precast Concrete wall Panels High Performance and Light Weight concrete
	Prakki Jaya Raghu Lakshmi Pavani Susmitha	 Ultra-High-Performance Concrete Rheology of SCMs

Mangalampalli Anil Kumar • 3D printed concrete • Rheology of SCMs Sangita De • 3D printed concrete • Machine Learning